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Chapter 1

Algebraic Foundations

This introductory chapter contains a survey of some basic algebraic con-
cepts that will be employed throughout the book. Elementary algebra uses
the operations of arithmetic such as addition and multiplication, but
replaces particular numbers by symbols and thereby obtains formulas
that, by substitution, provide solutions to specific numerical problems. In
modern algebra the level of abstraction is raised further: instead of dealing
with the familiar operations on real numbers, one treats general operations
— processes of combining two or more elements to yield another element—in
general sets. The aim is to study the common properties of all systems
consisting of sets on which are defined a fixed number of operations
interrelated in some definite way—for instance, sets with two binary
operations behaving like + and - for the real numbers.

Only the most fundamental definitions and properties of algebraic
systems—that is, of sets together with one or more operations on the
set—will be introduced, and the theory will be discussed only to the extent
needed for our special purposes in the study of finite fields later on. We
state some standard results without proof. With regard to sets we adopt the
naive standpoint. We use the following sets of numbers: the set N of natural
numbers, the set Z of integers, the set @ of rational numbers, the set R of
real numbers, and the set C of complex numbers.
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1. GROUPS

In the set of all integers the two operations addition and multiplication are
well known. We can generalize the concept of operation to arbitrary sets.
Let S be a set and let S X S denote the set of all ordered pairs (s, ¢) with
s €S8, t€S. Then a mapping from S X S into S will be called a (binary)
operation on S. Under this definition we require that the image of (s,7) €
S X § must be in S; this is the closure property of an operation. By an
algebraic structure or algebraic system we mean a set S together with one or
more operations on S.

In elementary arithmetic we are provided with two operations,
addition and multiplication, that have associativity as one of their most
important properties. Of the various possible algebraic systems having a
single associative operation, the type known as a group has been by far the
most extensively studied and developed. The theory of groups is one of the
oldest parts of abstract algebra as well as one particularly rich in applica-
tions.

1.1. Definition. A group is a set G together with a binary operation * on
G such that the following three properties hold:

1. = is associative; that is, for any a, b, c € G,
a*x(bxc)=(axb)*c.

2. There is an identity (or unity) element e in G such that for all
acsgG,
a*e=exa=aq.
3. For each a € G, there exists an inverse element a~' € G such that

a*a ‘=g lrag=ec.

If the group also satisfies
4. Foralla, bed,

ax*b=bx*aq,
then the group is called abelian (or commutative).

It is easily shown that the identity element e and the inverse element
a ! of a given element a € G are uniquely determined by the properties
above. Furthermore, (a*b)™'=5b"'%a"! for all a, b€ G. For simplicity,
we shall frequently use the notation of ordinary multiplication to designate
the operation in the group, writing simply ab instead of a * b. But it must be
emphasized that by doing so we do not assume that the operation actually is
ordinary multiplication. Sometimes it is also convenient to write a + b
instead of @ * b and — g instead of @', but this additive notation is usually
reserved for abelian groups.
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The associative law guarantees that expressions such as a,a,---q,
with a,€G, 1< j<n, are unambiguous, since no matter how we insert
parentheses, the expression will always represent the same element of G. To
indicate the n-fold composite of an element @ € G with itself, where n €N,
we shall write

a"=aa---a (nfactorsa)

if using multiplicative notation, and we call a” the nth power of a. If using
additive notation for the operation * on G, we write

na=a+a+---+a  (nsummandsa).

Following customary notation, we have the following rules:

Multiplicative Notation Additive Notation
a"=(a"" (-n)a=n(—a)
aam=a"*t" na+ma={(n+m)a
(a®)"=a"" m(na) = (mn)a

For n=0€1Z, one adopts the convention a®=e in the multiplicative
notation and 0a =0 in the additive notation, where the last “zero” repre-
sents the identity element of G.

1.2. Examples

(i) Let G be the set of integers with the operation of addition. The
ordinary sum of two integers is a unique integer and the
associativity is a familiar fact. The identity element is O (zero),
and the inverse of an integer a is the integer — a. We denote
this group by Z.

(ii)) The set consisting of a single element e, with the operation *
defined by e * e = ¢, forms a group.

(iii) Let G be the set of remainders of all the integers on division by
6—that is, G ={0,1,2,3,4,5)—and let a * b be the remainder
on division by 6 of the ordinary sum of a and b. The existence
of an identity element and of inverses is again obvious. In this
case, it requires some computation to establish the associativity
of ». This group can be readily generalized by replacing the
integer 6 by any positive integer n. 0O

These examples lead to an interesting class of groups in which every
element is a power of some fixed element of the group. If the group
operation is written as addition, we refer to “multiple” instead of ““power”
of an element.

1.3. Definition. A multiplicative group G is said to be cyclic if there is an
element a € G such that for any b € G there is some integer j with b =a’.
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Such an element a is called a generator of the cyclic group, and we write
G={a).

It follows at once from the definition that every cyclic group is
commutative. We also note that a cyclic group may very well have more
than one element that is a generator of the group. For instance, in the
additive group Z both 1 and —1 are generators.

With regard to the “additive” group of remainders of the integers on
division by n, the generalization of Example 1.2(iii), we find that the type of
operation used there leads to an equivalence relation on the set of integers.
In general, a subset R of S X S is called an equivalence relation on a set S if
it has the following three properties:

(@) (s,5)€ R for all s €S (reflexivity).
(b) If (s,2) € R, then (¢, s) € R (symmetry).
(c) If (s,1), (t,u) € R, then (s, u) € R (transitivity).

The most obvious example of an equivalence relation is that of equality. It is
an important fact that an equivalence relation R on a set S induces a
partition of S—that is, a representation of S as the union of nonempty,
mutually disjoint subsets of S. If we collect all elements of S equivalent to a
fixed s € S, we obtain the equivalence class of s, denoted by

[s]=(teS:(s,1)ER).

The collection of all distinct equivalence classes forms then the desired
partition of S. We note that [s] = [¢] precisely if (s,7) € R. Example 1.2(iii)
suggests the following concept.

1.4. Definition. For arbitrary integers a, b and a positive integer n, we
say that a is congruent to b modulo n, and write a=bmodn, if the
difference @ — b is a multiple of n —that is, if @ = b + kn for some integer k.

It is easily verified that “congruence modulo n” is an equivalence
relation on the set Z of integers. The relation is obviously reflexive and
symmetric. The transitivity also follows easily: if a=b+ kn and b=c + In
for some integers k and /, then a=c+(k 4+ [)n, so that a = bmod n and
b = cmod n together imply a = cmod n.

Consider now the equivalence classes into which the relation of
congruence modulo n partitions the set Z. These will be the sets

[0]={(....,—2n,—n,0,n,2n,...},
[1]=(..,-2n+1,-n+1,1,n+1,2n+1,...},

[n=1]=(..,—n-1,-1,n=1,2n-1,3n—1,...).

We may define on the set {[0],[1],...,[n — 1]} of equivalence classes a binary
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operation (which we shall again write as +, although it is certainly not
ordinary addition) by

[a]+[b)=[a+b], (1.1)

where a and b are any elements of the respective sets [a] and [b] and the
sum a + b on the right is the ordinary sum of a and b. In order to show that
we have actually defined an operation—that is, that this operation is well
defined—we must verify that the image element of the pair ([al,[b]) is
uniquely determined by [a] and [b] alone and does not depend in any way
on the representatives a and b. We leave this proof as an exercise. Associa-
tivity of the operation in (1.1) follows from the associativity of ordinary
addition. The identity element is [0] and the inverse of [a] is [ — a]. Thus the
elements of the set {{0],[1},...,[n — 1]} form a group.

1.5. Definition. The group formed by the set {{0],{1],...,[n — 1]} of equiv-
alence classes modulo n with the operation (1.1) is called the group of
integers modulo n and denoted by Z .

Z, is actually a cyclic group with the equivalence class [1] as a

n

generator, and it is a group of order n according to the following definition.

1.6. Definition. A group is called finite (resp. infinite) if it contains
finitely (resp. infinitely) many elements. The number of elements in a finite
group is called its order. We shall write |G| for the order of the finite
group G.

There is a convenient way of presenting a finite group. A table
displaying the group operation, nowadays referred to as a Cayley table, is
constructed by indexing the rows and the columns of the table by the group
elements. The element appearing in the row indexed by @ and the column
indexed by b is then taken to be ab.

1.7. Example. The Cayley table for the group Z is:

+ [ [o] (1] (2] (3] [4] [5]
o} | [o] [1] [2] [3] (41 I5]
(01 21 31 (4 51 [0
(2] [2] [31 (4 (51 fol [1]
(31 (31 [41 s} (o] [1] [2]
(411 [41 [s] [o] [1] [z} (3]
(510 (51 fo} 11 f[2] (3] [4] o

A group G contains certain subsets that form groups in their own
right under the operation of G. For instance, the subset {[0],[2].[4]} of Z is
easily seen to have this property.



6 Algebraic Foundations

1.8. Definition. A subset H of the group G is a subgroup of G if H is itself
a group with respect to the operation of G. Subgroups of G other than the
trivial subgroups {e} and G itself are called nontrivial subgroups of G.

One verifies at once that for any fixed a in a group G, the set of all
powers of a is a subgroup of G.

1.9. Definition. The subgroup of G consisting of all powers of the ele-
ment g of G is called the subgroup generated by a and is denoted by (a).
This subgroup is necessarily cyclic. If {(a) is finite, then its order is called
the order of the element a. Otherwise, a is called an element of infinite order.

Thus, a is of finite order k if k is the least positive integer such that
a* = e. Any other integer m with a” = e is then a multiple of k. If S is a
nonempty subset of a group G, then the subgroup H of G consisting of all
finite products of powers of elements of S is called the subgroup generated
by S, denoted by H = (S). If (§) =G, we say that S generates G, or that G
is generated by S.

For a positive element n of the additive group Z of integers, the
subgroup (n) is closely associated with the notion of congruence modulo n,
since ¢ = bmod n if and only if @ — b € (n). Thus the subgroup (n) defines
an equivalence relation on Z. This situation can be generalized as follows.

L10. Theorem. If H is a subgroup of G, then the relation R, on G
defined by (a, b) € Ry, if and only if a = bh for some h € H, is an equivalence
relation.

The proof is immediate. The equivalence relation R, is called /eft
congruence modulo H. Like any equivalence relation, it induces a partition
of G into nonempty, mutually disjoint subsets. These subsets ( = equivalence
classes) are called the left cosets of G modulo H and they are denoted by

aH={ah:he H)

(orat+ H={a+h:he H) if G is written additively), where a is a fixed
element of G. Similarly, there is a decomposition of G into right cosets
modulo H, which have the form Ha = {ha: h € H). If G is abelian, then the
distinction between left and right cosets modulo H is unnecessary.

1.11. Example. Let G=12Z,, and let H be the subgroup {{0],{3].{6].[9]-
Then the distinct (left) cosets of G modulo H are given by:

[0]+ # = {[0].[3].[6].[9]}.
[1]+ H = {[1].[4].[7].[10D).
[2]+ H = {[2].[5].{8].[11]}. O

1.12.  Theorem. If H is a finite subgroup of G, then every (left or
right) coset of G modulo H has the same number of elements as H.
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1.13. Definition. If the subgroup H of G only yields finitely many
distinct left cosets of G modulo H, then the number of such cosets is called
the index of H in G.

Since the left cosets of G modulo H form a partition of G, Theorem
1.12 implies the following important result.

L.14. Theorem. The order of a finite group G is equal to the product
of the order of any subgroup H and the index of H in G. In particular, the
order of H divides the order of G and the order of any element a € G divides
the order of G.

The subgroups and the orders of elements are easy to describe for
cyclic groups. We summarize the relevant facts in the subsequent theorem.

1.15. Theorem

(i) Every subgroup of a cyclic group is cyclic.

(ii) In a finite cyclic group {a) of order m, the element a* generates a
subgroup of order m /ged(k, m), where gcd(k, m) denotes the
greatest common divisor of k and m.

(iif) If d is a positive divisor of the order m of a finite cyclic group {a),
then {a) contains one and only one subgroup of index d. For any
positive divisor f of m, {(a) contains precisely one subgroup of
order f.

(iv) Ler f be a positive divisor of the order of a finite cyclic group {a).
Then (a) contains ¢( ) elements of order f. Here ¢( f) is Euler’s
function and indicates the number of integers n with 1l<n< f
that are relatively prime to f.

(v) A finite cyclic group {a) of order m contains ¢(m)
generators — that is, elements a” such that (a") = {(a). The gen-
erators are the powers a” with gcd(r,m) =1.

Proof. (i) Let H be a subgroup of the cyclic group (a) with
H = {e). If a" € H, then a~" € H; hence H contains at least one power of a
with a positive exponent. Let d be the least positive exponent such that
a? € H, and let a* € H. Dividing s by d gives s=qd +r, 0<r <d, and
g.r €Z. Thus a*(a”9)7=a" € H, which contradicts the minimality of d,
unless r = 0. Therefore the exponents of all powers of a that belong to H are
divisible by d, and so H = {(a“}.

(i) Put d =gcd(k, m). The order of (a*) is the least positive
integer n such that a*" = e. The latter identity holds if and only if m divides
kn, or equivalently, if and only if m /d divides n. The least positive n with
this property is n=m /d.

(ili) If dis given, then (a?) is a subgroup of order m /d, and so of
index d, because of (ii). If (a*) is another subgroup of index d, then its
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order is m /d, and so d = ged(k, m) by (ii). In particular, d divides k. so that
a* € (a?) and (a*) is a subgroup of (a“). But since both groups have the
same order, they are identical. The second part follows immediately because
the subgroups of order f are precisely the subgroups of index m /f.

(iv) Let [(a)|=m and m = df. By (ii), an element a* is of order f if
and only if ged(k, m) = d. Hence, the number of elements of order f is equal
to the number of integers k with 1<k <m and ged(k, m)=d. We may
write k = dh with 1 < h < f, the condition ged(k, m) = d being now equiva-
lent to ged(h, f)=1. The number of these 4 is equal to ¢(f).

(v) The generators of (a) are precisely the elements of order m, so
that the first part is implied by (iv). The second part follows from (ii). O

When comparing the structures of two groups, mappings between the
groups that preserve the operations play an important role.

1.16. Definition. A mapping f: G — H of the group G into the group H is
called a homomorphism of G into H if f preserves the operation of G. That is,
if * and - are the operations of G and H, respectively, then f preserves the
operation of G if for all a,b€ G we have f(a*bh)= f(a)-f(b). If, in
addition, f is onto H, then f is called an epimorphism (or homomorphism
“onto”) and H is a homomorphic image of G. A homomorphism of G into G
is called an endomorphism. If f is a one-to-one homomorphism of G onto H,
then f is called an isomorphism and we say that G and H are isomorphic. An
isomorphism of G onto G is called an automorphism.

Consider, for instance, the mapping f of the additive group Z of the
integers onto the group Z, of the integers modulo », defined by f(a) ={al.
Then

fla+b)=[a+b]=[al+[b]=f(a)+f(b) fora,beZ,

and f is a homomorphism.

If f: G — H is a homomorphism and e is the identity element in G,
then ee = e implies f(e)f(e) = f(e), so that f(e)=¢’, the identity element
in H. Fromaa™'=e we get f(a 'Y= (f(a)) ' foralla €G.

The automorphisms of a group G are often of particular interest,
partly because they themselves form a group with respect to the usual
composition of mappings, as can be easily verified. Important examples of
automorphisms are the inner automorphisms. For fixed a € G, define f, by
f.(b)=aba™! for b€ G. Then f, is an automorphism of G of the indicated
type, and we get all inner automorphisms of G by letting a run through all
elements of G. The elements b and aba™ ! are said to be conjugate, and for a
nonempty subset S of G the set aSa™' = {asa”': s € S} is called a conjugate
of S. Thus, the conjugates of S are just the images of S under the various
inner automorphisms of G.
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1.17. Definition. The kernel of the homomorphism f: G — H of the group
G into the group H is the set

kerf={aeG: f(a)=¢"},
where e’ is the identity element in H.

1.18. Example. For the homomorphism f:Z - Z, given by f(a)=[a].
ker f consists of all @ € Z with [a]=[0]. Since this condition holds exactly
for all multiples a of n, we have kerf = (n), the subgroup of Z generated
by n. O

It is easily checked that kerf is always a subgroup of G. More-
over, kerf has a special property: whenever a €G and b € kerf, then
aba™ ' € ker f. This leads to the following concept.

1.19. Definition. The subgroup H of the group G is called a normal
subgroup of G if aha™ '€ H foralla& G and all h € H.

Every subgroup of an abelian group is normal since we then have
aha™ "= aa 'h = eh = h. We shall state some alternative characterizations of
the property of normality of a subgroup.

1.20. Theorem

(i) The subgroup H of G is normal if and only if H is equal to its
conjugates, or equivalently, if and only if H is invariant under all
the inner automorphisms of G.
(it)  The subgroup H of G is normal if and only if the left coset aH is
equal to the right coset Ha for every a € G.

One important feature of a normal subgroup is the fact that the set
of its (left) cosets can be endowed with a group structure.

1.21. Theorem. If H is a normal subgroup of G, then the set of (left)
cosets of G modulo H forms a group with respect to the operation (aH }(bH ') =
(ab)H.

1.22. Definition. For a normal subgroup H of G, the group formed by
the (left) cosets of G modulo H under the operation in Theorem 1.21 is
called the factor group (or quotient group) of G modulo H and denoted by
G/H.

If G/H is finite, then its order is equal to the index of H in G. Thus,
by Theorem 1.14, we get for a finite group G.

1G]
G/Hi= .
G/HI=
Each normal subgroup of a group G determines in a natural way a
homomorphism of G and vice versa.
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1.23.  Theorem (Homomorphism Theorem). Ler f: G — f(G)=G,
be a homomorphism of a group G onto a group G,. Then ker f is a normal
subgroup of G, and the group G, is isomorphic to the factor group G/kerf.
Conversely, if H is any normal subgroup of G, then the mapping ¢: G > G/H
defined by y(a)=aH for a€ G is a homomorphism of G onto G/H with
kery = H.

We shall now derive a relation known as the class equation for a
finite group, which will be needed in Chapter 2, Section 6.

1.24. Definition. Let S be a nonempty subset of a group G. The normal-
izer of S'in G is the set N(§S)={(a€G:aSa '=8).

1.25. Theorem. For any nonempty subset S of the group G, N(S) is
a subgroup of G and there is a one-to-one correspondence between the left
cosets of G modulo N(S) and the distinct conjugates aSa™ " of S.

Proof We have e € N(S), and if a, b€ N(S), then @™ ' and ab are
also in N(S), so that N(S) is a subgroup of G. Now

aSa '=bSb™' = S=a 'bSb 'a=(a 'b)S(a"'b)”’
«a 'beN(S)=beaN(S).

Thus, conjugates of S are equal if and only if they are defined by elements
in the same left coset of G modulo N(S), and so the second part of the
theorem is shown. O

If we collect all elements conjugate to a fixed element a, we obtain a
set called the conjugacy class of a. For certain elements the corresponding
conjugacy class has only one member, and this will happen precisely for the
elements of the center of the group.

1.26. Definition. For any group G, the center of G is defined as the set
C={c&eG:ac=ca for all a € G).

It is straightforward to check that the center C is a normal subgroup
of G. Clearly, G is abelian if and only if C = G. A counting argument leads
to the following result.

1.27. Theorem (Class Equation). Let G be a finite group with
center C. Then
k
Gl =1Cl+ X

i=1

IR

where each n, is >2 and a divisor of |G| In fact, n,n,,...,n, are the
numbers of elements of the distinct conjugacy classes in G containing more than
one member.
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Proof. Since the relation “a is conjugate to b is an equivalence
relation on G, the distinct conjugacy classes in G form a partition of G.
Thus, |G| is equal to the sum of the numbers of elements of the distinct
conjugacy classes. There are |C| conjugacy classes (corresponding to the
elements of C) containing only one member, whereas n,, n,..... n, are
the numbers of elements of the remaining conjugacy classes. This vields the
class equation. To show that each n, divides [G], it suffices to note that », is
the number of conjugates of some a € G and so equal to the number of left
cosets of G modulo N({a}) by Theorem 1.25. 0

2. RINGS AND FIELDS

In most of the number systems used in elementary arithmetic there are two
distinct binary operations: addition and multiplication. Examples are pro-
vided by the integers, the rational numbers, and the real numbers. We now
define a type of algebraic structure known as a ring that shares some of the
basic properties of these number systems.

1.28. Definition. A ring (R, +,-) is a set R, together with two binary
operations, denoted by + and -, such that:

1. R is an abelian group with respect to +.

2. - is associative—that is, (a-b)-c=a-(b-c) for all a, b,c € R.

3. The distributive laws hold; that is, for all a,b,c€ R we have
a(b+cy=a-b+a-cand(b+c)a=b-a+c-a.

We shall use R as a designation for the ring (R, +, -) and stress that
the operations + and - are not necessarily the ordinary operations with
numbers. In following convention, we use O (called the zero element) to
denote the identity element of the abelian group R with respect to addition,
and the additive inverse of a is denoted by — a; also, a +(— b) is abbrevi-
ated by a — b. Instead of a-b we will usually write ab. As a consequence of
the definition of a ring one obtains the general property a0 = Oa = 0 for all
a € R. This, in turn, implies (—a)b=a(—b)=—ab foralla, b€ R.

The most natural example of a ring is perhaps the ring of ordinary
integers. If we examine the properties of this ring, we realize that it has
properties not enjoyed by rings in general. Thus. rings can be further
classified according to the following definitions.

1.29. Definition

(1) A ring is called a ring with identity if the ring has a multiplica-
tive identity—that is, if there is an element e such that ae = ea
=g for all a € R.

(11) A ring is called commutative if - 1s commutative.
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(ii1) A ring is called an integral domain if it 1s a commutative ring
with identity e = O in which ab =0 impliesa=0 or b= 0.

(iv) A ring is called a division ring (or skew field) if the nonzero
elements of R form a group under -

(v) A commutative division ring is called a field.

Since our study is devoted to fields, we emphasize again the defini-
tion of this concept. In the first place, a field is a set F on which two binary
operations, called addition and multiplication, are defined and which con-
tains two distinguished elements 0 and e with 0 = e. Furthermore, F is an
abelian group with respect to addition having 0 as the identity element, and
the elements of F that are =0 form an abelian group with respect to
multiplication having e as the identity element. The two operations of
addition and multiplication are linked by the distributive law a(b + ¢) = ab
+ ac. The second distributive law (b + ¢)a = ba + ca follows automatically
from the commutativity of multiplication. The element 0 is called the zero
element and e is called the multiplicative identity element or simply the
identity. Later on, the identity will usually be denoted by 1.

The property appearing in Definition 1.29(iii)—namely, that ab =0
implies a=0 or b=0—is expressed by saying that there are no zero
divisors. In particular, a field has no zero divisors, for if ab =0 and a =0,
then multiplication by a~! yields b=a~'0=0.

In order to give an indication of the generality of the concept of ring,
we present some examples.

1.30. Examples

(i) Let R be any abelian group with group operation +. Define
ab =0 for all a, b € R; then R is a ring.

(i1) The integers form an integral domain, but not a field.

(1i1) The even integers form a commutative ring without identity.

(iv) The functions from the real numbers into the real numbers
form a commutative ring with identity under the definitions for
f+ g and fg given by (f + g)(x)= f(x)+g(x) and (fg)(x)=
f(x)g(x) for x €R.

(v) The set of all 2 X2 matrices with real numbers as entries forms
a noncommutative ring with identity with respect to matrix
addition and multiplication. O

We have seen above that a field is, in particular, an integral domain.
The converse is not true in general (see Example 1.30(11)), but it will hold if
the structures contain only finitely many elements.

1.31. Theorem. Every finite integral domain is a field.

Proof. Let the elements of the finite integral domain R be
a,.da,..... a,. For a fixed nonzero element a € R, consider the products
aa,.aas..... aa,. These are distinct, for if aa, = aa,, then a(a, —a,) =0, and
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since a = 0 we must have a, — a; =0, or a, = a,. Thus each element of R is
of the form aa,, in particular, e = aa; for some i with 1<i<n, where ¢
is the identity of R. Since R is commutative, we have also a,a=e, and so g,
is the multiplicative inverse of a. Thus the nonzero elements of R form a
commutative group, and R is a field. a

1.32. Definition. A subset S of a ring R is called a subring of R provided
S is closed under + and - and forms a ring under these operations.

1.33. Definition. A subsetJ of a ring R is called an ideal provided J is a
subring of R and for alla€ J and r € R we havear€ J and rae J.

1.34. Examples

(i) Let R be the field Q of rational numbers. Then the set Z of
integers is a subring of @, but not an ideal since, for example,
1€Z,1€@ buti-1=5€¢Z.

(i) Let R be a commutative ring, a € R, and let J = {ra: r € R},
then J is an ideal.

(iii) Let R be a commutative ring. Then the smallest ideal contain-
ing a given element a € R is the ideal (a)={ra+na:r € R,
n € Z). If R contains an identity, then (a) = {ra:r € R}. O

1.35. Definition. Let R be a commutative ring. An ideal J of R is said to
be principal if there is an a € R such that J = (a). In this case, J is also
called the principal ideal generated by a.

Since ideals are normal subgroups of the additive group of a ring, it
follows immediately that an ideal J of the ring R defines a partition of R
into disjoint cosets, called residue classes modulo J. The residue class of the
element a of R modulo J will be denoted by [a]=a + J. since it consists of
all elements of R that are of the form a+ ¢ for some ¢ € J. Elements
a, b € R are called congruent modulo J, written a = bmod J, if they are in
the same residue class modulo J, or equivalently, if 2 — b € J (compare with
Definition 1.4). One can verify that a = bmod J implies a + r = b + rmod J,
ar = brmod J, and ra = rbmod J for any r € R and na = nbmod J for any
neZ. If, in addition, r=smodJ, then a+r=b+smodJ and ar=
bsmod J.

It is shown by a straightforward argument that the set of residue
classes of a ring R modulo an ideal J forms a ring with respect to the
operations

(a+JJ)+(b+J)=(a+b)+J, (1.2)
(a+JWb+J)=ab+ J. (1.3)

1.36. Definition. The ring of residue classes of the ring R modulo the
ideal J under the operations (1.2) and (1.3) is called the residue class ring (or
factor ring) of R modulo J and is denoted by R /J.
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1.37.  Example (The residue class ring Z /(n)). As in the case of groups
(compare with Definition 1.5), we denote the coset or residue class of the
integer ¢ modulo the positive integer n by [a], as well as by a + (n), where
(n) is the principal ideal generated by n. The elements of Z /(n) are

[0]=0+(n),[1]=1+(n),....[n—1]=n—1+(n). a

1.38. Theorem. Z/(p), the ring of residue classes of the integers
modulo the principal ideal generated by a prime p, is a field.

Proof. By Theorem 1.31 it suffices to show that Z/(p) is an
integral domain. Now [1] is an identity of Z /( p), and [a][b]=[ab] = [0} if
and only if ab = kp for some integer k. But since p is prime, p divides ab if
and only if p divides at least one of the factors. Therefore, either [a] = [0] or
{p]=1[0], so that Z /( p) contains no zero divisors. O

1.39. Example. Let p=3. Then Z /( p) consists of the elements [0], [1],
and [2]. The operations in this field can be described by operation tables
that are similar to Cayley tables for finite groups (see Example 1.7):

+ o] ] (2 | [0] [1] [2]
[ol | [o] [1] (2]  [ol| [o] [o] [o]
Oy 0 21 fol (11| [l [1] [2]
(2] 1 [2] [ol {11 211 (o] [2] [1] a]

The residue class fields Z /( p) are our first examples of finite fields
—that is, of fields that contain only finitely many elements. The general
theory of such fields will be developed later on.

The reader is cautioned not to assume that in the formation of
residue class rings all the properties of the original ring will be preserved in
all cases. For example, the lack of zero divisors is not always preserved, as
may be seen by considering the ring Z /(n), where n is a composite integer.

There is an obvious extension from groups to rings of the definition
of a homomorphism. A mapping ¢: R — S from a ring R into a ring § is
called a homomorphism if for any a, b € R we have

¢la+b)=9(a)+e(b) and ¢(ab)=g(a)e(b).
Thus a homomorphism ¢: R — S preserves both operations + and - of R

and induces a homomorphism of the additive group of R into the additive
group of S. The set

kerp={aeR:p(a)=0€S)

is called the kernel of ¢. Other concepts, such as that of an isomorphism, are
analogous to those in Definition 1.16. The homomorphism theorem for
rings, similar to Theorem 1.23 for groups, runs as follows.

1.40. Theorem (Homomorphism Theorem for Rings). If ¢ is a
homomorphism of a ring R onto a ring S, then ker g is an ideal of R and S is
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isomorphic to the factor ring R /ker . Conversely, if J is an ideal of the ring
R, then the mapping ¥: R — R /J defined by Y(a)y=a+J for ae R is a
homomorphism of R onto R /J with kernel J.

Mappings can be used to transfer a structure from an algebraic
system to a set without structure. For instance, let R be a ring and let ¢ be a
one-to-one and onto mapping from R to a set S; then by means of ¢ one
can define a ring structure on S that converts ¢ into an isomorphism. In
detail, let 5, and s, be two elements of S and let r, and r, be the elements of
R uniquely determined by ¢(r,)=s, and ¢(r,)=s,. Then one defines
s, + 5, to be @(r, + r,) and 5,5, to be p(r,r,), and all the desired properties
are satisfied. This structure on S may be called the ring structure induced by
@. In case R has additional properties, such as being an integral domain or a
field, then these properties are inherited by S. We use this principle in order
to arrive at a more convenient representation for the finite fields Z /( p).

1.41. Definition.” For a prime p, let F, be the set {0,1,....,p —1} of
integers and let ¢:Z/(p)—F, be the mapping defined by ¢([a])=a for
a=0,1,...,p—1. Then F,. endowed with the field structure induced by ¢, is
a finite field, called the Galois field of order p.

By what we have said before, the mapping ¢:Z /( p) —F, is then an
isomorphism, so that ¢({a]+[b]) = e({al)+ @([(b]) and o((a]b]) =
e((a)e([b)). The finite field F, has zero element 0, identity I, and its
structure is exactly the structure of Z /( p). Computing with elements of F,
therefore means ordinary arithmetic of integers with reduction modulo p.

1.42. Examples

(i) Consider Z /(5), isomorphic to F;={0,1,2,3,4), with the iso-
morphism given by: [0]—0, [1]—1, [2] > 2, [3]—>3, [4] - 4.
The tables for the two operations + and - for elements in Fy
are as follows:

+|01234 -|01234
o0 1 2 3 4 00 0 0 0 O
i1 2 3 4 0 10 1 2 3 4
212 3 4 0 1 210 2 4 1 3
3/3 4 0 1 2 3/]0 3 1 4 2
414 0 1 2 3 410 4 3 2 1

(ii) An even simpler and more important example is the finite field
F,. The elements of this field of order two are 0 and 1, and the
operation tables have the following form:

+10 o 1
olo oloo
11o 1

1

1

11 0

In this context, the elements O and 1 are called binary elements. O
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If b is any nonzero element of the ring Z of integers. then the
additive order of b is infinite; that is, nb = 0 implies n = 0. However, in the
ring Z /( p), p prime, the additive order of every nonzero element b is p: that
is, pb =10, and p 1s the least positive integer for which this holds. It is of
interest to formalize this property.

1.43. Definition. If R is an arbitrary ring and there exists a positive
integer n such that nr =0 for every r € R, then the least such positive
integer n is called the characteristic of R and R is said to have (positive)
characteristic n. If no such positive integer n exists, R is said to have
characteristic 0.

1.44. Theorem. A ring R = {0} of positive characteristic having an
identity and no zero divisors must have prime characteristic.

Proof. Since R contains nonzero elements, R has characteristic
n = 2. If n were not prime, we could write n = km with k, me Z, 1 <k, m
< n. Then 0 = ne = (km)e = (ke)(me), and this implies that either ke =0
or me = 0 since R has no zero divisors. It follows that either kr = (ke)r =0
for all r€ R or mr=(me)r=0 for all r € R, in contradiction to the
definition of the characteristic n. ]

1.45. Corollary. A finite field has prime characteristic.

Proof. By Theorem 1.44 it suffices to show that a finite field F has a
positive characteristic. Consider the multiples e,2e,3e,... of the identity.
Since F contains only finitely many distinct elements, there exist integers &
and m with 1< k <m such that ke = me, or (m—k)e =20, and so F has a
positive characteristic. O

The finite field Z /( p) (or, equivalently, F,) obviously has character-
istic p, whereas the ring Z of integers and the field @ of rational numbers
have characteristic 0. We note that in a ring R of characteristic 2 we have
2a=a+a=0, hence a= —a for all a € R. A useful property of commuta-
tive rings of prime characteristic is the following,.

1.46. Theorem. Let R be a commutative ring of prime characteristic
p. Then

(a+b)" =a”"+b"" and (a—b) =a” - b
fora,b€ R and n €N.
Proof. We use the fact that

7] plezste e

=0mod p

for all i € Z with 0 <i < p, which follows from (?) being an integer and the
observation that the factor p in the numerator cannot be cancelled. Then by



